Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Document Type
Year range
1.
Small ; 19(15): e2206154, 2023 04.
Article in English | MEDLINE | ID: covidwho-2173459

ABSTRACT

As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene's hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously.


Subject(s)
COVID-19 , Fullerenes , Humans , SARS-CoV-2 , Fullerenes/pharmacology , Protein Binding
2.
Adv Funct Mater ; 31(22): 2009003, 2021 May 26.
Article in English | MEDLINE | ID: covidwho-1158823

ABSTRACT

2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.

3.
Small ; 17(11):2170046, 2021.
Article in Spanish | Wiley | ID: covidwho-1139301

ABSTRACT

In article number 2007091, Ievgen S. Donskyi, Chuanxiong Nie, Kai Ludwig, Jakob Trimpert, and co-workers report an idea of designing a graphene-based nanostructure that can rupture corona virions. This study shows that a combination of two different mechanisms at nanobiointerfaces by manipulation of the functionality of nanoplatform is an efficient way to control and accelerate biointeractions and to produce new vectors for future antiviral applications.

4.
Small ; 17(11): e2007091, 2021 03.
Article in English | MEDLINE | ID: covidwho-1060956

ABSTRACT

Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic and has taken lives of approximately two million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2.


Subject(s)
Graphite/chemistry , SARS-CoV-2/chemistry , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/virology , Cryoelectron Microscopy , Humans , Microscopy, Atomic Force , Pandemics , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL